-
- Algemene informatie
- Eindterm 031 01 00 00 Purpose of mass-and-balance considerations
- Eindterm 031 02 00 00 Loading
- Eindterm 031 04 00 00 Mass and balance details of aircraft
- Eindterm 031 05 00 00 Determination of cg position
- Eindterm 031 06 00 00 Cargo handling
- Eindterm 034 01 00 00 Performance – Helicopters- General
- Eindterm 034 02 00 00 Performance class 3 - single-engine helicopters
- Eindterm 080 01 00 00 Principles of flight - Helicopters - Subsonic aerodynamics
- Eindterm 082 02 00 00 Transonic aerodynamics and compressibility effects
- Eindterm 082 03 00 00 Rotorcraft types
- Eindterm 082 04 00 00 Main-rotor aerodynamics
- Eindterm 082 05 00 00 Main-rotor mechanics
- Eindterm 082 06 00 00 Tail rotors
- Eindterm 082 07 00 00 Equilibrium, stability and control
- Eindterm 082 08 00 00 Helicopter flight mechanics
- Eindterm 071 02 00 00 Special operational procedures and hazards (general aspects)
- Eindterm 071 03 00 00 Emergency procedures (helicopters)
- Wijzigingen
Algemene informatie
Opgesteld door: CBR divisie CCV
Categoriecode en exameninformatie:
- LVPHFPP (PPLH, LAPLH), digitaal, 22 meerkeuzevragen, cesuur 75% (17 van de 22 vragen goed)
Bijzonderheden: Geen
Vastgesteld door:
Technische Commissie Flight Performance and Planning (Mass and balance + Performance – helicopters) en Principles of flight – helicopters en Operational procedures
Beoordeeld door:
- Logistiek, Transport en Personenvervoer raad; kamer 3: Luchtvaart op 14 september 2018
Goedgekeurd door:
- Divisiemanager CCV op 17 september 2018
Ingangsdatum: 1 april 2019
Datum laatste aanpassing: 1 april 2019
Toelichting gebruik toetstermen:
- Eindtermen: Dit zijn de hoofdonderwerpen die in het examen voorkomen. Hierin staat 'ruim' omschreven wat er in het examen terug kan komen.
- Toetstermen: Dit zijn onderdelen van een eindterm. Hierin staat meer uitgebreid omschreven wat er in het examen terug kan komen.
- Tax: Dit is de taxonomiecode van Romiszowski. Deze code geeft aan op welk niveau de vragen over een toetsterm gesteld worden.
Toelichting taxonomiecode:
- F = Feitelijke kennis. De kandidaat kan feiten reproduceren (herkennen of herinneren).
- B = Begripsmatige kennis. De kandidaat kan begrippen of principes omschrijven.
- R = Reproductieve vaardigheden. De kandidaat kan acties uitvoeren die volgens een vastgelegde procedure verlopen.
- P = Productieve vaardigheden. De kandidaat kan acties uitvoeren waarbij hij zijn eigen creativiteit en inzicht nodig heeft.
Eindterm 031 01 00 00 Purpose of mass-and-balance considerations
031 01 01 00 Mass Limitations
-
01 Describe the relationship between aircraft mass and structural stress. Remark - see also 021 01 01 00. Tax: B, PPLH 02 Describe that mass must be limited to ensure adequate margins of strength. Tax: B, PPLH
-
01 Describe the relationship between aircraft mass and aircraft performance. Tax: B, PPLH 02 Describe that aircraft mass must be limited to ensure adequate aircraft performance. Tax: B, PPLH
031 01 02 00 Centre-of-gravity (CG) limitations
-
01 Describe the relationship between CG position and stability/controllability of the aircraft. Tax: B, PPLH 02 Describe the consequences if CG is in front of the forward limit. Tax: B, PPLH 03 Describe the consequences if CG is behind the aft limit. Tax: B, PPLH
Eindterm 031 02 00 00 Loading
031 02 01 00 Terminology
-
01 Define the following mass terms:basic empty mass; take-off mass; landing mass; ramp/taxi mass; gross mass (the actual mass of an aircraft at a specified time); zero fuel mass. Tax: F, PPLH
-
01 Define the following load terms: block fuel; taxi fuel; trip fuel; reserve fuel (contingency, alternate, final reserve fuel); extra fuel Tax: F, PPLH 02 Explain the relationship between the various load-and-mass components listed in 031 02 01 01 and 031 02 01 02. Tax: B, PPLH 03 Calculate the mass of particular components from other given components. Tax: P, PPLH 04 Convert fuel mass, fuel volume and fuel density given in different units used in aviation. Tax: R, PPLH
031 02 02 00 Mass limits
-
01 Define the maximum zero-fuel mass (the maximum permissible mass of an aircraft with no usable fuel). Tax: F, PPLH 03 Define maximum take-off mass. Tax: F, PPLH 05 Define the maximum landing mass. Tax: F, PPLH
031 02 03 00 Mass calculations
-
03 Calculate the allowed mass for take-off. Tax: P, PPLH
Eindterm 031 04 00 00 Mass and balance details of aircraft
031 04 01 00 Contents of mass-and-balance documentation
-
01 State where the datum and moment-arms for aircraft can be found. Tax: F, PPLH 02 Extract appropriate data from given documents. Tax: R, PPLH 03 Define 'datum' (reference point), 'moment arm' and 'moment'. Tax: F, PPLH
-
01 State where the CG position for an aircraft at basic empty mass can be found. Tax: F, PPLH 02 State where the CG limits for an aircraft can be found. Tax: F, PPLH 03 Describe the different forms in presenting CG position as distance from datum or other references. Tax: B, PPLH 04 Explain the meaning of centre of gravity (CG). Tax: B, PPLH
-
01 Extract the appropriate data from given sample documents. Tax: R, PPLH
-
01 Extract the appropriate data from given sample documents. Tax: R, PPLH
-
01 Extract the appropriate data (e.g. seating schemes, compartment dimensions and limitations) from given sample documents. Tax: R, PPLH
-
01 Extract the appropriate data (e.g. fuel-tank capacities and fuel-tank positions) from given sample documents. Tax: R, PPLH
031 04 03 00 Extraction of basic empty mass (BEM) and CG data from aircraft documentation.
-
01 Extract values for BEM from given documents. Tax: R, PPLH
-
01 Extract values for CG position and moment at BEM from given documents. Tax: R, PPLH
-
01 Extract values from given documents for deviation from standard configuration as a result of varying crew, optional equipment, optional fuel tanks etc. Tax: R, PPLH
Eindterm 031 05 00 00 Determination of cg position
031 05 01 00 Methods
-
01 Calculate the CG position of an aircraft by using the formula: CG position = sum of moments / total mass. Tax: P, PPLH
-
01 Determine the CG position of an aircraft by using the loading graphs given in sample documents. Tax: R, PPLH
031 05 02 00 Load and trim sheet
-
01 Add loading data and calculate masses in a sample load sheet. Tax: P, PPLH 02 Calculate moments and CG positions. Tax: P, PPLH 03 Check CG position at zero fuel mass and take-off mass to be within CG envelope including last minute changes, if applicable. Tax: R, PPLH
Eindterm 031 06 00 00 Cargo handling
031 06 03 00 Securement of load
-
01 Explain the reasons to restrain or secure cargo and baggage. Tax: B, PPLH
Eindterm 034 01 00 00 Performance – Helicopters- General
034 01 02 00 General Performance Theory
-
01 Explain the following phases of flight: take-off; climb; level flight; descent; approach and landing. Tax: B, PPLH 02 Describe the necessity for different take-off and landing procedures. Tax: B, PPLH
-
01 Define the following terms: CAT A; CAT B; Performance Class 1, 2 and 3; congested area; elevated heliport; helideck; heliport; hostile environment; non-hostile environment; obstacle; rotor radius (R); take-off mass; touchdown and lift-off area (TLOF); safe forced landing; speed for best rate of climb (VY); never exceed speed (VNE); cruising speed and maximum cruising speed. Tax: F, PPLH 04 Define the terms ‘climb angle’ and ‘climb gradient’. Tax: F, PPLH 05 Define the terms ‘flight path angle’ and ‘flight path gradient’. Tax: F, PPLH 03 Define the terms ‘descent angle’ and ‘descent gradient’. Tax: F, PPLH 06 Define VmaxRange (speed for maximum range) and VmaxEnd (speed for maximum endurance). Tax: F, PPLH 08 Explain the terms ‘operational ceiling’ and ‘absolute ceiling’. Tax: B, PPLH 10 Explain the difference between hovering in ground effect (HIGE) and hovering out of ground effect (HOGE). Tax: B, PPLH
-
01 Understand and interpret the power required/power available versus TAS graphs. Tax: B, PPLH
-
01 Understand and interpret height–velocity graphs. Tax: B, PPLH
-
01 Explain how the following factors affect helicopter performance: pressure altitude; humidity; temperature; wind; helicopter mass; helicopter configuration; helicopter centre of gravity (CG). Tax: B, PPLH
Eindterm 034 02 00 00 Performance class 3 - single-engine helicopters
034 02 01 00 Effect of Variables on Single-Engine Helicopter Performance
-
01 Determine the wind component, altitude and temperature for hovering, take-off and landing. Tax: F, PPLH 02 Explain that operations are to be conducted only from/to heliports and over such routes, areas and diversions contained in a non-hostile environment where a safe forced landing can be carried out (point CAT.OP.MPA.137 of the EU Regulation on air operations, except when the helicopter is approved to operate in accordance with point CAT.POL.H.420). (Consider the exception: Operations may be conducted in a hostile environment. Ground level exposure - and exposure for elevated final approach and take-off areas (FATOs) or helidecks in non-hostile environments - is allowed for operations approved under CAT.POL.H.305, during the take-off and landing phases.) Tax: B, PPLH 03 Explain the effect of temperature, wind and altitude on climb, cruise and descent performance. Tax: B, PPLH
034 02 02 00 Take-off and landing
-
01 Explain the take-off and landing requirements. Tax: B, PPLH 02 Explain the maximum allowed take-off and landing mass. Tax: B, PPLH 03 Explain that mas has to be restricted to HIGE. Tax: B, PPLH 04 Explain that if HIGE is unlikely to be achieved (for example, blocked by an obstruction), then mass must be restricted to HOGE. Tax: B, PPLH
034 02 04 00 Use of helicopter performance data
-
01 Find the maximum wind component. Tax: F, PPLH 02 Find the maximum allowed take-off mass for certain conditions. Tax: F, PPLH 03 Find the height–velocity parameters. Tax: F, PPLH
-
01 Find the time, distance and fuel required to climb for certain conditions. Tax: F, PPLH 02 Find the rate of climb under given conditions and the best rate-of-climb speed VY. Tax: F, PPLH
-
01 Find the cruising speed and fuel consumption for certain conditions. Tax: F, PPLH 02 Calculate the range and endurance under given conditions. Tax: P, PPLH
-
01 Find the maximum wind component. Tax: F, PPLH 03 Find the height–velocity parameters. Tax: F, PPLH
Eindterm 080 01 00 00 Principles of flight - Helicopters - Subsonic aerodynamics
082 01 01 00 Basic concepts, laws and definitions
-
01 List the fundamental quantities and units in SI, such as mass (kg), length (m), time (s). Tax: F, PPLH 02 Be able to convert imperial units to SI units and vice versa. Tax: F, PPLH
-
01 Describe air temperature and pressure in function of height. Tax: B, PPLH 02 Define the International Standard Atmosphere (ISA). Tax: F, PPLH 03 Define air density, and explain the relationship between air density, pressure and temperature. Tax: F, PPLH 04 Explain the influence of the moisture content on air density. Tax: B, PPLH 05 Define pressure altitude and air density altitude. Tax: F, PPLH
-
01 State and interpret Newton’s three laws of motion. Tax: F, PPLH 02 Distinguish between mass and weight, and their units. Tax: R, PPLH
-
01 Describe steady and unsteady airflow. Tax: B, PPLH 05 State Bernoulli’s equation and use it to explain and define the relationship between static, dynamic and total pressure. Tax: F, PPLH 06 Define the stagnation point in the flow round an aerofoil, and explain the pressure obtained at the stagnation point. Tax: F, PPLH 08 Define 'TAS', 'IAS' and 'CAS'. Tax: F, PPLH 09 Define a two-dimensional airflow and its relationship to an aerofoil of infinite span (i.e. no blade tip vortices and, therefore, no induced drag). Explain the difference between two- and threedimensional airflows. Tax: F, PPLH 10 Explain that viscosity is a feature of any fluid (gas or liquid). Tax: B, PPLH 12 Describe laminar and turbulent boundary layers and the transition from laminar to turbulent. Show the influence of the roughness of the surface on the position of the transition point. Tax: B, PPLH
082 01 02 00 Two-dimensional airflow
-
01 Define the terms 'aerofoil section', 'aerofoil element', 'chordline', 'chord', 'thickness', 'thickness to chord ratio', 'camber line', 'camber' and 'leading-edge radius'. Tax: F, PPLH 02 Describe symmetrical and asymmetrical aerofoil sections. Tax: B, PPLH
-
01 Define the angle of attack (α). Tax: F, PPLH 02 Describe: the resultant force from the pressure distribution and the friction at the element; the resultant force from the boundary layers and the velocities in the wake; and the loss of momentum due to friction forces. Tax: B, PPLH 03 Resolve the aerodynamic force into the components of lift (L) and drag (D). Tax: B, PPLH 04 Define the lift coefficient (CL) and the drag coefficient (CD). Tax: F, PPLH 05 Show that the CL is a function of the α. Tax: R, PPLH 06 Explain how drag is caused by pressure forces on the surfaces of an aerofoil and by friction in the boundary layers. Define the term ‘profile drag’. Tax: B, PPLH 07 Define the L/D ratio. Tax: F, PPLH 08 Use the lift and drag equations to show the influence of speed and density on lift and drag for a given α. Tax: R, PPLH 09 Define the action line of the aerodynamic force and the CP. Tax: F, PPLH
-
01 Explain the boundary layer separation when α increases beyond the onset of stall and the decrease of lift and the increase of drag. Define the ‘separation point’. Tax: B, PPLH
-
01 Explain ice contamination, the modification of the section profile and the surfaces due to ice and snow, the influence on L and D and the L-D ratio, the influence on α (at stall onset), and the effect of the increase in weight. Tax: B, PPLH
082 01 03 00 The three-dimensional airflow round a blade
-
01 Describe the various blade planforms. Tax: B, PPLH 02 Define aspect ratio and blade twist. Tax: F, PPLH
-
01 Explain the spanwise flow around a blade and the appearance of blade tip vortices which are a loss of energy. Tax: B, PPLH 02 Explain the spanwise L distribution and the way in which it can be modified by twist (washout). Tax: B, PPLH
-
01 Explain the induced drag and the influence of α and aspect ratio. Tax: B, PPLH
-
01 Describe the aircraft fuselage and the external components that cause (parasite) drag, the airflow around the fuselage, and the influence of the pitch angle of the fuselage. Describe fuselage shapes that minimise drag. Tax: B, PPLH 02 Define profile drag as the sum of pressure (form) drag and skin friction drag. Tax: F, PPLH 03 Define ‘interference drag’. Tax: F, PPLH 04 Know the drag formula. Tax: F, PPLH
Eindterm 082 02 00 00 Transonic aerodynamics and compressibility effects
082 02 01 00 Airflow speeds and velocities
-
01 Define the speed of sound in air. Tax: F, PPLH 02 Define high subsonic, transonic and supersonic flows in relation to the value of the Mach number. Tax: F, PPLH
-
01 Describe shock wave in a supersonic flow and the changes in pressure and speed. Tax: B, PPLH 02 Describe the appearance of local supersonic flows on the surfaces of a blade. Tax: B, PPLH
Eindterm 082 03 00 00 Rotorcraft types
082 03 01 00 Rotorcraft
-
01 Explain the difference between an autogyro and a helicopter. Tax: B, PPLH
082 03 02 00 Helicopters
-
01 Describe (briefly) the single-main-rotor helicopter and the other configurations: tandem, co-axial, side by side, synchropter (with intermeshing blades), the compound helicopter and tilt-rotor. Tax: B, PPLH
-
01 Mention the tail rotor, the Fenestron, and the no tail rotor (NOTAR). Tax: F, PPLH 02 Define the rotor disc area and the blade area. Tax: F, PPLH 03 Describe the teetering rotor with the hinge axis on the shaft axis, and rotors with more than two blades with offset hinge axes. Tax: B, PPLH 04 Define the fuselage centre line and the three axes, roll, pitch and normal Tax: F, PPLH 05 Define gross weight and gross mass (and the units involved), disc and blade loading. Tax: F, PPLH
Eindterm 082 04 00 00 Main-rotor aerodynamics
082 04 01 00 Hover flight outside ground effect
-
01 Based on Newton’s second law (momentum) explain that the upward vertical force from the disc, i.e. the rotor thrust, is the result of vertical downward velocities inside the rotor disc. Tax: B, PPLH 02 Explain why the production of the induced flow requires power applied to the shaft, i.e. induced power. Induced power is least if the induced velocities have the same value on the whole disc (i.e. there is uniformity of flow over the disc). Tax: B, PPLH 03 Explain why vertical rotor thrust must be higher than the weight of the helicopter because of the vertical drag on the fuselage. Tax: B, PPLH 04 Define the pitch angle and the α of a blade element. Tax: F, PPLH 05 Explain L and D relating to a blade element (including induced and profile drag). Tax: B, PPLH 06 Explain the necessity for collective pitch angles changes, the influence on the α and rotor thrust, and the need for blade feathering. Tax: B, PPLH 08 Explain how profile drag on the blade elements generates a torque on the main shaft, and define the resulting rotor profile power. Tax: B, PPLH 09 Explain the influence of the air density on the required powers. Tax: B, PPLH
-
01 Using Newton’s third law (motion), explain the need for tail-rotor thrust, the required value being proportional to main-rotor torque. Show that tail-rotor power is proportional to tail-rotor thrust. Tax: B, PPLH 02 Explain the necessity for feathering of the tail-rotor blades and their control by the yaw pedals, and the maximum and minimum values of the pitch angles of the blades. Tax: B, PPLH
-
02 Define the total power required. Tax: F, PPLH 03 Describe the influence of ambient pressure, temperature and moisture on the required power. Tax: B, PPLH
082 04 02 00 Vertical climb
-
01 Describe the dependence of the vertical climb speed on the opposite vertical air velocity relative to the rotor disk. Tax: B, PPLH 02 Explain how α is controlled by the collective pitch angle control. Tax: B, PPLH
-
01 Define the total main-rotor power required as the sum of parasite power, induced power, climb power and rotor profile power. Tax: F, PPLH 02 Explain why the total main-rotor power required increases when the rate of climb increases. Tax: B, PPLH
082 04 03 00 Forward flight
-
01 Explain the assumption of a uniform inflow distribution on the rotor disc. Tax: B, PPLH 02 Show the upstream air velocities relative to the blade elements and the different effects on the advancing and retreating blades. Define the area of reverse flow. Explain the influence of forward speed on the circumferential speed of the blade tip. Tax: B, PPLH 03 Assuming constant pitch angles and rigid blade attachments, explain the roll moment from the asymmetric distribution of L. Tax: B, PPLH 04 Show that through cyclic feathering this imbalance could be eliminated by a low α (accomplished by a low pitch angle) on the advancing blade, and a high α (accomplished by a high pitch angle) on the retreating blade. Tax: R, PPLH 05 Describe the high air velocity at the advancing blade tip and the compressibility effects which limit maximum speed. Tax: B, PPLH 06 Describe the low air velocity on the retreating blade tip resulting from the difference between the circumferential speed and forward speed, the need for high α, and the onset of stall. Tax: B, PPLH 08 Explain the rotor thrust that is perpendicular to the rotor disc and the need for tilting the thrust vector forward. Tax: B, PPLH 09 Explain the conditions of equilibrium in steady straight and level flight. Tax: B, PPLH
-
01 Explain the flare in powered flight, the rearward tilt of the rotor disc and the thrust vector. Show the horizontal component that is in the opposite direction to forward velocity. Tax: B, PPLH 02 State the increase in thrust due to the upward inflow, and show the modifications in the α. Tax: F, PPLH 03 Explain the increase in rotor rpm fora non-governed rotor. Tax: B, PPLH
-
01 Explain that the induced velocities and power values decrease as the speed of the helicopter increases. Tax: B, PPLH 02 Define profile drag and profile power, and the increase in their values with the speed of the helicopter. Tax: F, PPLH 03 Define parasite drag and parasite power and the increase in their values with the speed of the helicopter. Tax: F, PPLH 04 Define total drag and its increase with the speed of the helicopter. Tax: F, PPLH 05 Describe the power required for the tail rotor and the power required by ancillary equipment. Tax: B, PPLH 06 Define the total power requirement as a sum of the above partial powers, and explain how it varies with the speed of the helicopter. Tax: F, PPLH 07 Explain the influence of helicopter mass, the air density and additional external equipment on the partial powers and the total power required. Tax: B, PPLH 08 Explain translational lift and show the decrease in required total power as the helicopter increases its speed from the hover. Tax: B, PPLH
082 04 04 00 Hover and forward flight in ground effect
-
01 Explain how the vicinity of the ground changes the downward flow pattern and the consequences on the lift (thrust) at constantrotor power. Show that ground effect depends on the height of the rotor above the ground and the rotor diameter. Show therequired rotor power at constant all-up mass (AUM) as a function of height above the ground. Describe the influence of forwardspeed. Tax: B, PPLH
082 04 05 00 Vertical descent
-
01 Describe the airflow through the rotor disc in a trouble-free vertical descent, power on, the airflow opposing the helicopter’s velocity, the relative airflow, and α. Tax: B, PPLH 02 Explain the vortex ring state, also known as settling with power. State the approximate vertical descent speeds that allow the formation of vortex ring, related to the values of the induced velocities. Tax: B, PPLH 03 Describe the relative airflow to the blades, the root stall, the loss of lift at the blade tip, and the turbulence. Show the effect of raising the lever and describe the effects on the controls. Tax: B, PPLH
-
01 State the need for early recognition and for a quick initiation of recovery. Describe the recovery actions. Tax: F, PPLH 02 Explain that the collective lever must be lowered quickly enough to avoid a rapid decay of rotor rpm due to drag on the blades, and explain the influence of rotational inertia of the rotor on the rate of decay. Tax: B, PPLH 03 Show the induced flow through the rotor disc, the rotational velocity and relative airflow, the inflow and inflow angles. Tax: R, PPLH 04 Show how the aerodynamic forces on the blade elements vary from root to tip and distinguish three zones: the inner stalled region, the middle driving region, and the driven region. Tax: R, PPLH 05 Explain the control of the rotor rpm with collective pitch. Tax: B, PPLH 06 Show the need of negative tail-rotor thrust with yaw control. Tax: R, PPLH 07 Explain the final increase in rotor thrust caused by raising the collective pitch to decrease the vertical descent speed and the decay in rotor rpm. Tax: B, PPLH
082 04 06 00 Forward flight – autorotation
-
01 Explain the factors that affect inflow angle and α, the autorotative power distribution, and the dissymmetry over the rotor disc in forward flight. Tax: B, PPLH
-
01 Show the effect of forward speed on the vertical descent speed. Tax: R, PPLH 02 Explain the effects of gross weight, rotor rpm and altitude (density) on endurance and range. Tax: B, PPLH 03 Explain the manoeuvers of turning and touchdown. Tax: B, PPLH 04 Explain the height-velocity curves. Tax: B, PPLH
Eindterm 082 05 00 00 Main-rotor mechanics
082 05 01 00 Flapping of the blade in hover
-
01 Define the tip path plane and the coning angle. Tax: F, PPLH 03 Show how the equilibrium of the moments about the flapping hinge of lift (thrust) and of the centrifugal force determine the coning angle of the blade (the blade mass being negligible). Tax: R, PPLH 04 Justify the lower limit of rotor rpm. Tax: B, PPLH
082 05 02 00 Flapping angles of the blade in forward flight
-
01 Assume rigid attachments of the blade to the hub and show the periodic lift, moment and stresses on the attachment, the ensuing metal fatigue, the roll moment on the helicopter and justify the necessity for a flapping hinge. Tax: B, PPLH 02 Assume no cyclic pitch and describe the lift on the advancing and retreating blades. Tax: B, PPLH 03 State the azimuthal phase lag (90°or less) between the input (applied pitch) and the output (flapping angle). Explain flapback (the rearward tilting of the tip path plane and total rotor thrust). Tax: F, PPLH
-
01 Show that in order to assume and maintain forward flight, the total rotor thrust vector must obtain a forward component by tilting the tip path plane. Tax: R, PPLH 02 Show how the applied cyclic pitch modifies the lift on the advancing and retreating blades and produces the required forward tilting of the tip path plane and the total rotor thrust. Tax: R, PPLH 03 Show the cone described by the blades and define the virtual axis of rotation. Define the plane of rotation. Tax: R, PPLH 04 Define the reference system in which we define the movements: the shaft axis and the hub plane. Tax: F, PPLH 05 Describe the swashplates, the pitch links and horns. Explain how the collective lever moves the non-rotating swashplate up or down the shaft axis. Tax: B, PPLH 06 Describe the mechanism by which the required cyclic pitch can be produce by tilting the swashplate with the cyclic stick. Tax: B, PPLH 07 Explain the transitional lift effect when the speed increases. Tax: B, PPLH
082 05 03 00 Blade-lag motion in forward flight
-
01 Explain the Coriolis force due to flapping, the resulting periodic moments in the hub plane, and the resulting periodic stresses which make lead-lag hinges necessary to avoid material fatigue. Tax: B, PPLH 02 Describe the profile drag forces on the blade elements and the periodic variation of these forces. Tax: B, PPLH
-
01 Explain the movement of the CG of the blades due to lead-lag movements in the multiblade rotor. Tax: B, PPLH 02 Show the effect on the fuselage and the danger of resonance between this force and the fuselage and undercarriage when the gear touches the ground. Tax: R, PPLH
082 05 04 00 Rotor systems
-
01 Explain that a teetering rotor is prone to mast bumping in low-G situations, and that it is difficult to counteract because there is no lift force to provide sideways movement. Tax: B, PPLH
-
01 Show the forces on the flapping hinges with large offset (virtual hinge) and the resulting moments, compare with other rotor systems. Tax: R, PPLH
082 05 05 00 Blade sailing
-
01 Define blade sailing, the influence of low rotor rpm and of a headwind. Tax: F, PPLH
-
01 Describe actions that minimise danger and the demonstrated wind envelope for engaging and disengaging rotors. Tax: B, PPLH
-
01 Explain the purpose of droop stops, and their retraction. Tax: B, PPLH
Eindterm 082 06 00 00 Tail rotors
082 06 01 00 Conventional tail rotor
-
01 Explain the airflow around the blades in the hover and in forward flight, and the effects of the tip speeds on noise production and compressibility. Tax: B, PPLH 02 Explain the effect of wind on tail-rotor aerodynamics and thrust in the hover, and any problems. Tax: B, PPLH 03 Explain the tail-rotor thrust and the control through pitch alterations (feathering). Tax: B, PPLH 04 Explain tail-rotor flapback, and the effects of Delta 3. Tax: B, PPLH 05 Describe the roll moment and drift as side effects of the tail rotor. Tax: B, PPLH 06 Explain the effects of tail-rotor failure. Tax: B, PPLH 07 Explain the loss of tail-rotor effectiveness (LTE), tail-rotor vortexring state, causes, cross wind, and yaw speed. Tax: B, PPLH
Eindterm 082 07 00 00 Equilibrium, stability and control
082 07 01 00 Equilibrium and helicopter attitudes
-
01 Explain why the vector sum of forces and moments must be zero in any acceleration-free situation. Tax: B, PPLH 02 Indicate the forces and the moments about the lateral axis in a steady hover. Tax: B, PPLH 03 Indicate the forces and the moments about the longitudinal axis in a steady hover. Tax: B, PPLH 06 Explain the consequence of the cyclic stick reaching its forward or aft limit during an attempt to take off to the hover. Tax: B, PPLH
-
01 Explain why the vector sum of forces and of moments must be zero in unaccelerated flight. Tax: B, PPLH 02 Indicate the forces and the moments about the lateral axis in steady straight and level flight. Tax: B, PPLH 06 Explain how forward speed influences the fuselage attitude. Tax: B, PPLH 07 Describe and explain the inflow roll effect. Tax: B, PPLH
082 07 02 00 Stability
-
01 Define static stability; give an example of static stability and of static instability. Tax: F, PPLH 03 Describe the influence of the horizontal stabilizer on static longitudinal stability Tax: B, PPLH 06 Describe the influence of the vertical stabilizer on static directional stability. Tax: B, PPLH
-
01 Define dynamic stability; give an example of dynamic stability and of dynamic instability. Tax: F, PPLH 02 Explain why static stability is a precondition for dynamic stability. Tax: B, PPLH
082 07 03 00 Control
-
01 Explain how helicopter control can be limited because of available stick travel. Tax: B, PPLH 02 Explain how the CG position influences the remaining stick travel. Tax: B, PPLH
-
01 Explain the mechanism which causes dynamic rollover. Tax: B, PPLH 02 Explain the required pilot action when dynamic rollover is starting to develop. Tax: B, PPLH
Eindterm 082 08 00 00 Helicopter flight mechanics
082 08 01 00 Flight limits
-
01 Show the power required for HOGE and HIGE, and the power available Tax: F, PPLH 02 Explain the effects of AUM, ambient temperature and pressure, density altitude and moisture. Tax: B, PPLH
-
01 Compare the power required and the power available as a function of speed in straight and level flight. Tax: B, PPLH 02 Define the maximum speed limited by power and the value relative to VNE and VNO. Tax: F, PPLH 03 Use the power graph to determine the speeds of maximum rate of climb and the maximum angle of climb. Tax: R, PPLH 04 Use the power graph to define true airspeed (TAS) for maximum range and maximum endurance, and consider the case of piston engine and the turbine engine. Explain the effects of tailwind or headwind on the speed for maximum range. Tax: R, PPLH 05 Explain the effects of AUM, pressure and temperature, density altitude, humidity. Tax: B, PPLH
-
01 Define the load factor, the radius and the rate of turn. Tax: F, PPLH 02 Explain the relationship between the angle of bank, the airspeed and the radius of turn, and between the angle of bank and the load factor. Tax: B, PPLH 03 Explain the influence of AUM, pressure and temperature, density altitude, and humidity. Tax: B, PPLH
082 08 02 00 Special conditions
-
01 Explain operations with limited power, use the power graph to show the limitations on vertical and level flight, and describe power checks and procedures for take-off and landing. Tax: B, PPLH 02 Describe manoeuvres with limited power. Tax: B, PPLH
-
01 Describe overpitching and show the consequences. Tax: B, PPLH 02 Describe situations likely to lead to overpitching. Tax: B, PPLH 03 Describe overtorquing and show the consequences. Tax: B, PPLH 04 Describe situations likely to lead to overtorquing. Tax: B, PPLH
Eindterm 071 02 00 00 Special operational procedures and hazards (general aspects)
071 02 08 00 Wake turbulence
-
01 Define the term ”wake turbulence” (ICAO Doc 4444 4.9). Tax: F, PPLH 02 Describe tip vortices circulation (ICAO Doc 9426 Part II). Tax: B, PPLH 03 Explain when vortex generation begins and ends (ICAO Doc 9426 Part II). Tax: B, PPLH 04 Describe vortex circulation on the ground with and without crosswind (ICAO Doc 9426 Part II). Tax: B, PPLH
-
01 List the three main factors which, when combined, give the strongest vortices (heavy, clean, slow). Tax: F, PPLH 02 Describe the wind conditions which are worst for wake turbulence near the ground. Tax: B, PPLH
-
01 Describe the actions to be taken to avoid wake turbulence, specifically separations. Tax: B, PPLH
071 02 14 00 Rotor downwash
-
01 Describe the downwash. Tax: B, PPLH
-
01 Explain its effects: soil erosion, water dispersal and spray, recirculation, damage to property, loose articles. Tax: B, PPLH
071 02 15 00 Operation influence by meteorological conditions (helicopter)
-
01 Give the definition of 'white out'. Tax: F, PPLH 02 Describe loss of spatial orientation. Tax: B, PPLH 03 Describe take-off and landing techniques. Tax: B, PPLH
-
01 Describe blade sailing. Tax: B, PPLH 02 Describe wind operating envelopes. Tax: B, PPLH 03 Describe vertical speed problems. Tax: B, PPLH
Eindterm 071 03 00 00 Emergency procedures (helicopters)
071 03 01 00 Influence by technical problems
-
01 Describe recovery techniques in the event of engine failure during hover, climb, cruise, approach. Tax: B, PPLH
-
01 Describe the basic actions when encountering fire in cabin, cockpit, flight deck or engine(s). Tax: B, PPLH
-
01 Describe the basic actions following loss of tail rotor. Tax: B, PPLH 02 Describe the basic actions following loss of directional control. Tax: B, PPLH
-
01 Describe recovery actions. Tax: B, PPLH
-
01 Describe cause and recovery actions when encountering retreating blade stall. Tax: B, PPLH
-
01 Describe potential conditions and recovery actions when encountering retreating blade stall. Tax: B, PPLH
-
01 Describe recovery actions. Tax: B, PPLH
-
01 Describe overspeed control Tax: B, PPLH
-
01 Describe potential conditions and recovery action. Tax: B, PPLH
-
01 Describe potential conditions of the ‘conducive to’ and ‘avoidance of’ effect. Tax: B, PPLH
-
Alleen de onderwerpen die als meest relevant voor privévliegers worden beschouwd zijn uitgewerkt in de leerdoelen. De onderwerpen die niet in de leerdoelen zijn uitgewerkt, maar wel terugkomen in de AMC-syllabus, zijn onderstaand benoemd:
De volgende onderwerpen uit de AMC-syllabus zijn niet uitgewerkt in bovenstaande leerdoelen: 031: Mass calculations: Use of standard masses for passengers, bagage and crew.
Wijzigingen
-
031 01 01 02: derde LO is verwijderd. 031 02 01 02: leerdoel (03) is toegevoegd. 031 02 02 01: leerdoel (01) is toegevoegd en derde LO is verwijderd. 031 02 02 03: beide leerdoelen zijn verwijderd. Leerdoel (p01) is voor PPLA toegevoegd. 031 02 03 01 (03): leerdoel is alleen voor PPLH (was alleen voor PPLA). 031 03 00 00: onderdeel is verwijderd. 031 04 01 01: leerdoel (03) is toegevoegd. 031 04 01 02: derde LO is verwijderd en leerdoel (04) is toegevoegd. 031 04 01 04: onderdeel is toegevoegd. 031 04 01 05: onderdeel is toegevoegd. 031 04 01 06: onderdeel is toegevoegd. 031 04 01 07: onderdeel is toegevoegd. 031 06 00 00: onderdeel is toegevoegd. De kolom met ‘opmerkingen’ is verwijderd. Alle informatie die (niet) geldt voor PPL staat (niet) in de LO’s. 031 04 01 01 (01): ‘name’ is aangepast naar ‘state’. 031 04 01 02 (01) en (02): ‘name’ is aangepast naar ‘state’. 034 01 02 02: tweede LO is toegevoegd. 034 01 02 03: dit onderdeel heeft een nieuw nummer gekregen: 034 01 02 05. 034 01 02 03 en 034 01 02 04: deze onderdelen zijn toegevoegd. 034 02 01 00: dit onderdeel is verwijderd. 034 02 04 01 (was 034 02 05 01): derde leerdoel is verwijderd en leerdoel (03) is toegevoegd 034 01 02 02 (01): ‘safe forced landing’, ‘speed for best rate of climb (VY)’, ‘never exceed speed (VNE)’ en ‘cruising speed and maximum cruising speed’ toegevoegd. 034 01 02 02 (08): ‘service ceiling’ en ‘single engine service ceiling’ zijn verwijderd en ‘operational ceiling’ is toegevoegd. 034 01 02 02 (10): ‘understand’ is aangepast naar ‘explain’. 034 02 02 00 is 034 01 00 geworden, 034 02 03 00 is 034 02 02 00 geworden en 034 02 05 00 is 034 02 04 00 geworden. 034 02 02 00 (was 034 02 03 00): eerste leerdoel is opgesplitst in twee leerdoelen (01) en (02). 082 01 01 01: derde en vierde LO zijn verwijderd. 082 01 01 03: derde en vierde LO zijn verwijderd. 082 01 02 02: leerdoel (08) is toegevoegd. 082 01 02 03: tweede en derde LO zijn verwijderd. 082 01 03 02: leerdoel (05) is toegevoegd. 082 01 03 04: leerdoel (03) is toegevoegd. 082 02 01 03: onderdeel is verwijderd. 082 03 01 01: tweede leerdoel is verwijderd. 082 03 02 02: de definities en het eerste LO zijn verwijderd. 082 04 01 01: eerste, tweede, vijfde, zesde, achtste, elfde, dertiende en zestiende LO zijn verwijderd. 082 04 02 01: tweede LO is verwijderd. 082 04 02 02: derde en vierde LO zijn verwijderd. 082 04 03 01: tweede LO is verwijderd. 082 04 03 02: vierde LO is verwijderd. 082 05 02 02: eerste leerdoel verwijderd en leerdoel (01) toegevoegd. 082 05 03 02: onderdeel is verwijderd. 082 05 04 01: beide LO’s zijn verwijderd en vervangen voor leerdoel (01). 082 05 04 02: onderdeel is verwijderd. 082 05 06 00: onderdeel is verwijderd. 082 06 01 01: onderdeel is verwijderd. 082 06 01 02: leerdoel (04) en (05) zijn toegevoegd. 082 06 02 00: onderdeel is verwijderd. 082 06 03 00: onderdeel is verwijderd. 082 06 04 00: onderdeel is verwijderd. 082 07 01 01: leerdoel (07) is toegevoegd. 082 07 03 01: onderdeel is toegevoegd. 082 07 03 02: onderdeel is verwijderd. 082 07 03 03: leerdoel (02) is toegevoegd. 082 08 01 02: vijfde LO is verwijderd. 082 08 01 03: derde leerdoel is verwijderd en leerdoel (03) is toegevoegd. 082 08 02 01: tweede LO is verwijderd. 082 01 01 01 (02): aanpassing van ‘Show and apply the tables of conversion of units’ naar ‘Be able to convert imperial units to SI units and vice versa’. 082 01 01 02 (02): ‘use the table’ aangepast naar ‘define’. 082 01 01 03 (01): aanpassing van ‘Describe Newton’s second law: force equal product of mass and acceleration’ naar ‘State and interpret Newton’s three laws of motion’. 082 01 01 03 (02): aanpassing van ‘Mass and weight, units’ naar ‘Distinguish between mass and weight, and their units’. 082 01 01 04 (05): aanpassing van ‘State Bernoulli’s equation in a non-viscous airflow, use this equation to explain and define static pressure, dynamic pressure, total pressure’ naar ‘State Bernoulli’s equation and use it to explain and define the relationship between static, dynamic and total pressure’. 082 01 02 02 (02): aanpassing van ‘Describe the pressure distribution on the upper and lower surface’ naar ‘Describe the resultant force from the pressure distribution and the friction at the element, the resultant force from the boundary layers and the velocities in the wake and the loss of momentum due to friction forces’. 082 01 03 01 (01): aanpassing van ‘Describe the planform of the blade (wing), rectangular and tapered blades, untwisted and twisted blades’ naar ‘Describe the various blade planforms’. 082 01 03 01 (02): aanpassing van ‘Define the root chord and the tip chord, the mean chord, the aspect ratio and the blade or wing twist’ naar’Define aspect ratio and blade twist’. 082 01 03 02 (01): aanpassing van ‘Explain the spanwise flow in the case of a wing in a uniform upstream airflow and the appearance of the tip vortices which are a loss of energy’ naar ‘Explain the spanwise flow around a blade and the appearance of blade tip vortices which are a loss of energy’. 082 01 03 04 (01): ‘Describe fuselage shapes that minimise drag’ is toegevoegd. 082 01 03 04 (02): aanpassing van ‘Define the parasite drag as the result of the pressure drag and the friction drag’ naar ‘Define profile drag as the sum of pressure (form) drag and skin friction drag’. 082 01 03 04 (04): aanpassing van ‘The formula of the parasite drag and explain the influence of the speed’ naar ‘Know the drag formula’. 082 02 01 02 (01): aanpassing van ‘Describe the shock wave in a supersonic flow and the pressure and speed variation through the shock’ naar ‘Describe shock wave in a supersonic flow and the changes in pressure and speed’. 082 02 01 02 (02): aanpassing van ‘Describe the appearance of local supersonic flows at the upper face of a wing section and the recompression through a shock when the wing section is in an upstream high subsonic flow’ naar ‘Describe the appearance of local supersonic flows on the surfaces of a blade’. 082 03 01 01 (01): aanpassing van ‘Define the autogyro and the helicopter’ naar ‘Explain the difference between an autogyro and a helicopter’. 082 03 02 01 (01): ‘tilt-wing’ is verwijderd. 082 04 01 01 (01): ‘The values of these induced airspeeds increases as the thrust increases and decreases with increasing rotor diameter. Mention that the velocities some distance downstream are twice the value of the induced speed in the disc plane’ is verwijderd. 082 04 01 01 (02): ‘that’ is aangepast naar ‘why’. 082 04 01 01 (03): ‘that’ is aangepast naar ‘why’ en ‘in equilibrium with’ is aangepast naar ‘higher than’. 082 04 02 01 (01): aanpassing van ‘Describe the climb speed and the opposite downwards air velocity relative to the blades’ naar ‘Describe the dependence of the vertical climb speed on the opposite vertical air velocity relative to the rotor disk’. 082 04 02 02 (02): ‘that’ is aangepast naar ‘why’. 082 04 03 01 (09): aanpassing van ‘Explain the vertical equilibrium and the horizontal equilibrium in steady straight level flight’ naar ‘Explain the conditions of equilibrium in steady straight and level flight’. 082 04 05 02 (04): ‘Explain the RPM stability at a given collective pitch’ is verwijderd. 082 05 01 01: onderdeel is verwijderd. 082 05 01 03 (02): aanpassing van ‘Show how the lift (thrust) and the centrifugal force result in the equilibrium of the blade about the plapping hinge’ naar ‘Show how the equilibrium of the moments about the flapping hinge of lift (thrust) and of the centrifugal force determine the coning angle of the blade (the blade mass being negligible)’. 082 05 01 03 (03): aanpassing van ‘Explain the influence of the rotor RPM and the lift on the coning angle, justify the lower limit of the rotor RPM, relate the lift on one blade to the gross weight’ naar ‘Justify the lower limit of rotor rpm’. 082 05 02 01 (03): ‘Justify the rotor flapback for this situation and the rearwards tilting of the tip path plane. The rotor thrust perpendicular to the tip path plane is also tilted to the rear. Show the resultant rearwards component of the rotor thrust’ verwijderd en vervangen door ‘Explain flapback’. 082 05 03 03 (02): aanpassing van ‘Show the effect of this oscillating force on the fuselage and the danger of resonance between this alternating force and the fuselage and undercarriage. State the conditions likely to lead to the ground resonance. Describe the recovery actions’ naar ‘Show the effect on the fuselage and the danger of resonance between this force and the fuselage and undercarriage when the gear touches the ground’. 082 07 01 01 (01): ‘in any acceleration-free situation’ is toegevoegd. 082 07 01 02 (01): ‘in unaccelerated flight’ is toegevoegd. 082 07 02 01 (01): ‘give an example of static stability and of static instability’ is toegevoegd. 082 07 02 03 (01): ‘give an example of dynamic stability and of dynamic instability’ is toegevoegd. 082 08 01 01 (01): ‘OGE’ en ‘IGE’ aangepast naar ‘HOGE’ en ‘HIGE’. 082 08 01 03 (01): ‘when manoeuvering’ is verwijderd. 082 08 01 03 (02): ‘when manoeuvering’ is verwijderd. 082 08 02 01 (01): ‘and describe power checks and procedures for take-off and landing’ is toegevoegd. 071 02 15 03: onderdeel is verwijderd. 071 02 08 01,071 02 08 02 en 071 02 08 03: verwijzingen zijn verwijderd. 031 01 01 02: derde LO is verwijderd. 031 02 01 02: leerdoel (03) is toegevoegd. 031 02 02 01: leerdoel (01) is toegevoegd en derde LO is verwijderd. 031 02 02 03: beide leerdoelen zijn verwijderd. Leerdoel (p01) is voor PPLA toegevoegd. 031 02 03 01 (03): leerdoel is alleen voor PPLH (was alleen voor PPLA). 031 03 00 00: onderdeel is verwijderd. 031 04 01 01: leerdoel (03) is toegevoegd. 031 04 01 02: derde LO is verwijderd en leerdoel (04) is toegevoegd. 031 04 01 04: onderdeel is toegevoegd. 031 04 01 05: onderdeel is toegevoegd. 031 04 01 06: onderdeel is toegevoegd. 031 04 01 07: onderdeel is toegevoegd. 031 06 00 00: onderdeel is toegevoegd. De kolom met ‘opmerkingen’ is verwijderd. Alle informatie die (niet) geldt voor PPL staat (niet) in de LO’s. 031 04 01 01 (01): ‘name’ is aangepast naar ‘state’. 031 04 01 02 (01) en (02): ‘name’ is aangepast naar ‘state’. 034 01 02 02: tweede LO is toegevoegd. 034 01 02 03: dit onderdeel heeft een nieuw nummer gekregen: 034 01 02 05. 034 01 02 03 en 034 01 02 04: deze onderdelen zijn toegevoegd. 034 02 01 00: dit onderdeel is verwijderd. 034 02 04 01 (was 034 02 05 01): derde leerdoel is verwijderd en leerdoel (03) is toegevoegd 034 01 02 02 (01): ‘safe forced landing’, ‘speed for best rate of climb (VY)’, ‘never exceed speed (VNE)’ en ‘cruising speed and maximum cruising speed’ toegevoegd. 034 01 02 02 (08): ‘service ceiling’ en ‘single engine service ceiling’ zijn verwijderd en ‘operational ceiling’ is toegevoegd. 034 01 02 02 (10): ‘understand’ is aangepast naar ‘explain’. 034 02 02 00 is 034 01 00 geworden, 034 02 03 00 is 034 02 02 00 geworden en 034 02 05 00 is 034 02 04 00 geworden. 034 02 02 00 (was 034 02 03 00): eerste leerdoel is opgesplitst in twee leerdoelen (01) en (02). 082 01 01 01: derde en vierde LO zijn verwijderd.